
IEEE TRANSACTIONS ON GAMES 1

Open-Ended Evolution
for Minecraft Building Generation

Matthew Barthet, Antonios Liapis, Georgios N. Yannakakis
Institute of Digital Games, University of Malta, Msida, Malta.

Email: {matthew.barthet, antonios.liapis, georgios.yannakakis}@um.edu.mt

Abstract—This paper proposes a procedural content generator
which evolves Minecraft buildings according to an open-ended
and intrinsic definition of novelty. To realize this goal we evaluate
individuals’ novelty in the latent space using a 3D autoencoder,
and alternate between phases of exploration and transformation.
During exploration the system evolves multiple populations of
CPPNs through CPPN-NEAT and constrained novelty search in
the latent space (defined by the current autoencoder). We apply
a set of repair and constraint functions to ensure candidates
adhere to basic structural rules and constraints during evolution.
During transformation, we reshape the boundaries of the latent
space to identify new interesting areas of the solution space by
retraining the autoencoder with novel content. In this study we
evaluate five different approaches for training the autoencoder
during transformation and its impact on populations’ quality and
diversity during evolution. Our results show that by retraining
the autoencoder we can achieve better open-ended complexity
compared to a static model, which is further improved when
retraining using larger datasets of individuals with diverse
complexities.

Index Terms—Procedural Content Generation, Deep Learning,
Computational Creativity, 3D Voxels, Minecraft

I. INTRODUCTION

Early works on computational creativity approached the task
of content generation by searching the problem space using
evolutionary algorithms and an extrinsic objective function
[1]. As the problem spaces and fitness functions become
more complex, however, such algorithms tend to suffer from
premature convergence to suboptimal solutions. To overcome
this issue, modern creative artificial intelligence (AI) algo-
rithms have shifted toward abandoning objectives altogether
and using novelty search to reward solutions based on their
diversity [2]. Whilst simple novelty search helps avoid the
pitfalls of objective functions, it often still suffers from its
own search biases and population convergence [3], and does
not guarantee that solutions exhibit desired qualities. Open-
endedness in evolution through novelty [4] is an important
topic in computational creativity and artificial general intelli-
gence, and is at the center of this project.

Recent works on achieving open-endedness in procedural
content generation (PCG) have focused on using an intrinsic
definition for novelty which is defined on the system’s own
output. Intrinsic motivation (IM) in artificial systems has been
identified as an important factor for achieving higher forms
of open-ended creativity, and in situations where the objective

This project has received funding from the European Union’s Horizon 2020
programme under grant agreement No 951911.

Fig. 1: In-game representation of structures generated by our
approach, organized into a basic settlement.

of the system is difficult to model [5]. The Deep Learning
Novelty eXplorer (DeLeNoX) algorithm [3] approaches an IM
novelty function by assessing novelty in terms of a higher-
level representation, determined by an autoencoder (CNN). By
allowing the generator to adjust its measure for novelty accord-
ing to its own observations, DeLeNoX is able to continually
adapt its focus to search beyond its current biases, a concept
which is critical for achieving open-ended evolution. More
recent works have applied this intrinsically motivated approach
to a variety of tasks, such as 2D artifacts [6], [7], interesting
behaviors in robots [8] and search space illumination [9]. Our
approach builds upon DeLeNoX, expanding the algorithm on
more complex 3D structures.

In this paper we propose a computational system designed
to autonomously create interesting Minecraft buildings using
an intrinsic and open-ended definition of novelty. Sandbox
games such as Minecraft [10] are arguably the perfect canvas
to illustrate an artificial system’s creativity: their open-ended
gameplay allows the player to create any structure that can
be expressed as a set of voxels. On a high level, the system
alternates between phases of exploration and transformation.
During exploration, the latent space defined by the current
autoencoder is explored as thoroughly as possible by applying
constrained novelty search [2] to neuroevolution [11]. Repair
functions ensure individuals abide to a set of basic rules for
buildings, in place of an objective function. During transfor-
mation, the most novel individuals from each population form
a training set to retrain the autoencoder, modifying the latent
space (and distance function) and opening up new areas of the
solution space to explore. The new autoencoder is used for
the next iteration of the algorithm which can continue until

ar
X

iv
:2

20
9.

03
10

8v
1 

 [
cs

.L
G

] 
 7

 S
ep

 2
02

2



IEEE TRANSACTIONS ON GAMES 2

stopping criteria are met.
Our findings suggest that redefining the latent space using

novel data with a diverse range of structural complexity
improves the generator’s ability to find more complex and
novel features in its output. To our knowledge this approach
remains untested for generating complex 3D structures such as
Minecraft buildings. Current research into PCG for Minecraft
focuses on the goals laid out in the Generative Design in
Minecraft Competition [12] to design settlements and build-
ings, without emphasizing creativity in the generation process.
The buildings generated are often static, rule-based systems
that do not involve any optimization methods at all. We
position this work to fill in this space, and potentially inspire
more creativity-focused building and/or settlement generators.

II. RELATED WORK

This section provides a brief overview of computational
creativity and its link to PCG and games, as well as a look at
existing work on assessing novelty in the latent space, and a
summary of the state of PCG in Minecraft.

A. Computational Creativity and Games

Computational creativity refers to the study of computer
systems which generate content or behave in a manner that
an unbiased observer would consider creative, whilst being
capable of challenging humans on both a creative and scientific
level [13]. Whilst early work in this field targeted PCG in
isolated, single-faceted domains such as music [14] and stories
[15], games have quickly become recognized as the cutting-
edge application for the study of computational creativity
[16]. This is due to their content-intensive and multi-faceted
nature which provide rich interactions with the player. Creative
systems can also be used as mixed-initiative tools alongside
humans [17], [18], helping them to understand and promote
the creative process [19].

A critical concept in computational creativity—and artificial
life—is open-endedness (OE). Open-ended creativity can be
informally defined as the ability of a biological or artificial
system to keep producing novelty and complexity without
exhaustion [4]. This definition can be further broken down into
three classes (exploratory, expansive, transformative) accord-
ing to the extent to which the system must redefine its internal
models, and its ability to alter the boundaries of the search
space to explore new regions and/or dimensions [20]. Mod-
elling and evaluating OE is an active research topic in this field
[21]. Our approach to evaluating novelty in the latent space
does not fit ideally with the three classes mentioned above.
Whilst our generator could be said to produce expansive nov-
elty in the latent space through transformation, the boundaries
and dimensions of the search (phenotype) space remain static,
meaning it can only achieve exploratory novelty in the problem
space. Achieving higher forms of OE in the phenotype space
could involve exploiting the phenotype resolution (expansive)
and availability of materials (transformative) to open up new
dimensions of the search space.

Intrinsic motivation (IM) refers to an individual’s desire
to explore new behaviors out of an internal curiosity in the

outcome [22], acting freely without a separate motive or
external influence [23]. IM in artificial systems has been
used in situations where the objective is difficult to define, in
situations where transformative open-ended novelty is desired,
and as a method for increasing creative autonomy [5]. These
properties directly align with our goals for implementing a
Minecraft building generator with open-ended complexity and
creativity. Our proposed generator periodically redefines its
novelty function according to interesting individuals it has gen-
erated in the past (without any external influence), satisfying
the definition for IM given above. Through our evaluation we
discuss the issues and benefits of largely ignoring the quality
(extrinsic factors) of candidates and solely focusing on their
novelty as a fitness.

Within games, PCG is commonly tackled as a search-based
task [1], treating the problem as an optimization task by
evolving a population of artifacts according to a desired fitness
function which could involve aspects of gameplay behavior
or experience [24]. PCG for quality-diversity [25] is a recent
search-based approach which uses quality-diversity algorithms
(e.g., MAP-Elites [26] with novelty search [2] or surprise
search [27]) to preserve diversity in the behavior space whilst
improving their performance according to a desired fitness
function. On the other hand PCG via Machine Learning [28]
(PCGML) uses machine learned models which are trained on
existing game content to generate new data, removing the
need for complicated code to express the designer’s intentions
for the target domain. The models created through PCGML
algorithms can be used to recognize and repair infeasible
components of individuals [29], predict properties of their
content [30], and compress the content into fewer dimensions
using an autoencoder [31]. We cover uses of PCGML and
other algorithms specifically for Minecraft in section II-C.
Our approach combines the evolutionary principles of PCG-
QD, by targeting novelty in the latent space and ensuring
quality through constraints, while also leveraging learned
representations not for generation directly—as in PCGML—
but for the evaluation of novelty in a search-based paradigm.

B. Novelty in the Latent Space

Assessing an individual’s novelty through its latent repre-
sentation is a viable method for achieving OE as the bound-
aries of the latent space can be expanded by retraining the
encoder model. Furthermore, through this approach novelty
is calculated on the high-level patterns encoded in the latent
representation, providing a more meaningful measure regard-
ing the (current) possibility space. The deep-learning novelty
explorer paradigm [3] (DeLeNoX) leverages this concept by
cycling between phases of exploration and transformation.
In exploration, the generator uses the current autoencoder to
thoroughly search the current latent space. In the first imple-
mentation of DeLeNoX [3], this was accomplished through
neuroevolution of 2D spaceships with constrained novelty
search [32] in the latent space. During transformation, the
autoencoder is re-trained using the latest novel individuals
from the previous exploration phase. This effectively readjusts
the boundaries of the latent space and opens up new potential



IEEE TRANSACTIONS ON GAMES 3

areas of interesting individuals, improving the generator’s
ability to conduct an open-ended search.

The high-level approach of DeLeNoX has since been
adapted and extended for a number of other use cases. A sim-
ilar study to DeLeNoX generates interesting 2D shapes using
variational autoencoders [6], and demonstrated its effective-
ness in generating diversity over directly evolving individuals’
latent vectors. Similar methods have been used for autonomous
discovery of novel robot behaviors [8], data efficient search
space illumination [9], the generation of interesting images
[7] and Super Mario Levels [33] with open-ended novelty or
other diversity measures. Another DeLeNoX-based approach
has been used for visual DOOM playing using neuroevolution
and a latent representation of raw pixel data [34]. To the best of
our knowledge, the core principles of DeLeNoX—as explored
in this paper—have never been applied to generate novel 3D
content such as Minecraft buildings.

C. Minecraft Settlement Generation
Minecraft’s [10] open-ended, sandbox design makes it a

brilliant canvas for players and computers to express cre-
ative behavior by building structures that adapt to the world
around them. Given these strengths, it has become a popular
testbed for research, most notably in the Generative Design in
Minecraft Competition [12] (GDMC). The GDMC encourages
people to design AI programs for Minecraft that achieve
human-like creativity. The task presented by the competition is
to develop an autonomous Minecraft settlement generator that
produces functional settlements that are capable of adapting
to their environment, whilst remaining aesthetically pleasing
and evoking an interesting narrative to the viewer. Due to the
complexity of these challenges, the first round of contestants
did not focus on creativity of the individual buildings, opting
for simpler rule-based constructive generators [35].

Content generators have been developed for Minecraft out-
side the objectives related to the GDMC. The chronicle chal-
lenge [36] addresses computational storytelling by requiring
participants to generate meaningful stories for their settle-
ments. Cellular automata have been used to create realistic
buildings with a basic design for the interior volume [37]. Neu-
ral cellular automata have been used to create structures such
caves, buildings, and trees with increasing complexity and
ability to regenerate and repair themselves [38]. Generation of
the world itself has also been researched through works such as
World-GAN [39] which attempts to address the shortcomings
of the static world generator bundled with Minecraft through
generative adversarial networks. We position this work to fill
the gap in the research space for interesting and creative
buildings for Minecraft settlements.

III. METHODOLOGY

This paper proposes an autonomous Minecraft building gen-
erator with open-ended creativity and complexity by evaluating
novelty in the latent space. We adapt the core principles of
DeLeNoX [3] for this task, describing our approach to building
representation and generation in Section III-A, the exploration
phase in Section III-B, and transformation of the autoencoder
in Section III-C.

Fig. 2: Mapping of our voxel types to in-game materials, useful
for reconstructing the generator’s output inside Minecraft.
Each voxel in the lattice may encode one of five materials:
outdoor air, indoor air, floor, wall and roof. Air voxels are
empty: the distinction between outdoor and indoor is useful
for calculating the building’s volume and other constraints.

A. Representation and Generation

In our approach, we represent candidate solutions as three-
dimensional arrays of voxels: each voxel encodes a material
ID for its location. This aligns with Minecraft’s in-game
representation of data and allows us to transfer the content
generated directly to the game using useful tools such as
MCEdit [40], an example of which can be seen in Figure
1. It should be noted that our representation does not directly
use Minecraft materials such as wood and stone but rather
encodes architectural properties of the space that are needed
for the evaluation of the building. We provide the mapping of
our voxel types to Minecraft materials for generating in-game
models in Figure 2. The material in each voxel is represented
as a one-hot encoded vector of binary values. The chosen
resolution for the lattices was 20x20x20 voxels split into 5
channels (one for each material), similarly to how an RGB
image is represented. The resolution of the lattices and number
of materials available to the generator were kept constant and
could not be altered during the evolutionary process.

The genetic representation for individuals is a critical de-
sign decision when creating search-based content generators,
especially when aiming for open-ended evolution, as this
choice can limit the maximum complexity achievable. We
use compositional pattern producing networks (CPPNs) [41]
to encode the 3D lattice, due to their ability to generate
aesthetically pleasing structures. CPPNs are also capable of
encoding a phenotype of any resolution, providing an ideal bal-
ance between representational power and strong computational
efficiency. CPPNs have been proven useful for constrained
evolution of 3D voxel-based structures [42] for robot control.
The CPPN iterates over all 3D coordinates of the 3D lattice
(using x, y, z as input) and its output is a boolean value that
determines whether the voxel should be filled in that location
in the lattice. Figure 3 depicts the process of generating lattices
from genomes, ensuring they follow certain rules through
repair and constraints, and compressing them into a latent
vector using an encoder. The autoencoder is fed the material
lattice, rather than the boolean lattice, to ensure material data
is encoded in the latent vector and considered when assessing
the novelty of a structure.

As noted above, the output of the CPPN is a boolean



IEEE TRANSACTIONS ON GAMES 4

Fig. 3: Generating 3D structures using CPPNs and compressing them into latent vectors using an encoder.

lattice of empty or filled voxels (the architectural “hull” of
the building). A set of repair functions remove problematic
sections of this boolean hull and convert it into the material
lattice (with 5 materials described above). Repair functions
are applied in sequence: first, any floating voxels (i.e., not
indirectly attached to a floor voxel) are removed using a flood-
fill algorithm. Flood-fill works by picking a starting point from
the list of floor voxels and recursively visiting its neighbors
in all directions, marking solid voxels and ignoring empty
voxels. This process is repeated until every floor voxel has
been flooded from, discarding the solid voxels not visited
during the process. Next, only the largest detected structure is
kept, removing any voxels detached from this main structure.

After the repair process, materials are assigned to each filled
voxel based on a rule-based system in the following order: a
voxel at the absolute bottom of the coordinate system becomes
floor, a voxel with an empty voxel above it becomes roof,
voxels surrounded on all sides by filled voxels become interior
air, finally any remaining empty voxels are marked as exterior
air and remaining filled voxels become walls. This process
also carves out the interior of the structure, marking the voxels
as interior air which is a helpful distinction for tracking the
interior volume of the building. A final constraint is checked
at this point: a structure must contain an valid location for
an entrance. This is checked by iterating over the floor voxels
and checking if there is a wall at least three voxels high for an
entrance (in any of four possible rotations) adjacent to interior
air voxels to ensure the area is traversable.

B. Exploration

The role of the exploration phase is to thoroughly search the
current boundaries of the latent space for interesting candidate
solutions. Our approach to this phase follows DeLeNoX,
where neuroevolution of augmenting topologies [43] (NEAT)
is used to evolve several populations of CPPNs using con-
strained novelty search in the latent space. The use of NEAT
is ideal for open-ended evolution as it is capable of producing
unbounded genetic complexity whilst also preserving genetic
diversity through speciation. During exploration, the generator
runs NEAT on a set of separate populations and the current
autoencoder.

At the start of each generation of NEAT, the process
described in Section III-A is executed to create a population

of lattices from the genome pool. Due to our single con-
straint, any individuals that fail it are discarded and replaced
during the next round of reproduction. The feasible lattices
are compressed using the current autoencoder (as described
in Section III-C) resulting in a second ‘snapshot’ of the
population containing their latent vectors. These latent vectors
are used to calculate the novelty scores for each individual
which is done using the average Euclidean distance to the k-
nearest neighbors in the latent space (Eq. 1).

n(i) =
1

k

k∑
m=1

√√√√ D∑
n=1

(qn(i)− qn(µm))2 (1)

where n(i) is the novelty score of individual i, k is the number
of neighbors in the current population and the novel archive
that are considered for novelty (k = 15 in this paper), D is
the number of dimensions in the latent vector and qn(i) is the
value of the latent vector at position n when individual i is
provided as input to the autoencoder.

A novelty archive is maintained for each population to
ensure current individuals are compared to previous novel
examples. At the end of each generation of NEAT, the α
most novel individuals are inserted into the novelty archive
provided they are unique (no identical matches in the archive).
The novelty archive contains both the lattice and latent repre-
sentation of novel individuals, as these will be needed during
transformation. At the end of each generation, we record a
number of statistics on the properties of buildings generated
(bounding box size, symmetry, instability and surface area) for
our evaluation. These properties could be used to implement
more complex feasibility constraint functions in the future.

C. Transformation

As shown in Eq. (1), exploration takes place in the la-
tent space by calculating the novelty scores based on each
individual’s latent vector. Whilst this exploration is capable
of effectively searching the current latent space for novel
individuals, it is restricted by the boundaries of the manifold.
These boundaries are caused by the model that compresses
the lattices into latent vectors which in our case takes the
form of a 3D convolutional autoencoder. Through exploration
alone, the generator is only capable of achieving exploratory
novelty [20], limiting its ability to discover new features in the



IEEE TRANSACTIONS ON GAMES 5

Fig. 4: Overview of the exploration phase.

structures of buildings. By assessing individuals’ novelty in the
autoencoder’s latent space rather than in the lattice space, the
generator can shift the boundaries of its current search space
by retraining the autoencoder model using individuals it has
previously identified as interesting (novel). This results in an
intrinsically motivated reward function which is more capa-
ble of achieving higher forms of open-endedness (expansive,
transformative) compared to a static definition of novelty.

When compressing a 20x20x20 lattice into a 1D vector of
256 values, the encoder model consists of three alternating
layers of convolution (of size 3x3x3) and downsampling (of
size 2x2x2) which can be seen in Figure 3. The weights
of this model are assigned during training and are directly
responsible for how individuals assess novelty. During trans-
formation, we retrain the encoder model using a training set
of individuals taken from the previous exploration phase(s).
This retraining process is critical for achieving higher forms
of open-endedness, as the new weights of the encoder shift
the boundaries of the search space and open up new areas
for potentially interesting individuals. From a technical per-
spective, the retraining allows the encoder to better identify
high-level patterns in the building’s structure, improving its
ability to accurately compress more complex structures.

Transformation begins by retrieving novel individuals from
each population of the previous exploration phase(s) and can
be done in one of two ways: using the most novel individuals
from each population of the previous exploration phase(s), or
using the novelty archives of each population. Both approaches
ensure that the autoencoder is transformed using interesting
content only which helps to better guide the next exploration
phase towards interesting areas of the search space. The
two approaches differ in that the former assembles training
sets from the final populations of the exploration phase(s)
while the latter contains individuals deemed novel throughout
evolution. The autoencoders are retrained from scratch using
the assembled training set using the categorical cross entropy

loss function [44]. The novelty archives collected so far are
updated using the new encoder, assigning new latent vectors
for past novel individuals as this will impact how novelty finds
neighbors in the archive via Eq. 1.

IV. EXPERIMENTAL PROTOCOL

Assessing the creativity and open-endedness of content
generators and the quality of their products is challenging
due to the subjectivity of such notions. Since novelty scores
are not directly comparable across experiments, we assess the
diversity of the structures generated by comparing them at a
voxel level. We use Kullback-Leibler (KL) divergence as our
metric for assessing voxel diversity which has proven efficient
for comparing game levels [45], [33]. We also measure the
correlation between this KL divergence measure and each
experiments’ distance measure in the latent space, as this pro-
vides an insight into the regularization of the latent space and
the novelty function’s ability to group meaningfully similar
individuals together. We also evaluate the reconstruction accu-
racy of the autoencoders which directly quantifies the model’s
ability to identify high-level patterns in the buildings and
therefore discover more meaningful novel features. Finally,
we provide a qualitative comparison between experiments
by visualizing the structures generated and observing the
differences in complexity and patterns found to be novel.

Since our method focuses on the transformation of the
search space through a latent vector when assessing novelty,
the experiment explores different ways of training the autoen-
coder (AE) and includes two baselines. The first baseline is a
static AE which was trained on the seed populations (which
are common across all experiments) and is not retrained during
the transformation phase. While all methods in this paper
use the static autoencoder for their first exploration phase,
every method except static uses a new autoencoder after
the first transformation phase. The static AE baseline tests
whether retraining the autoencoder has any impact on its own



IEEE TRANSACTIONS ON GAMES 6

TABLE I: Reconstruction error (%) of the final populations of each experiment, based on the final autoencoder (at the end
of the 10th round of exploration). Results are averaged from 10 populations tested on the same autoencoder. The last column
shows the average reconstruction error for all final populations of all five experiments when using the autoencoder produced
by the experiment of that row.

AE
Pop. Static Random Latest Set Full History Nov. Archive Overall

Static 10.27 ± 0.82 16.03 ± 2.77 14.00 ± 0.49 15.73 ± 0.64 15.5 ± 1.52 14.31 ± 2.0
Random 92.61 ± 0.11 92.05 ± 0.62 94.59 ± 0.25 94.65 ± 0.3 92.45 ± 0.3 93.27 ± 1.0
Latest Set 21.57 ± 1.15 26.42 ± 2.92 5.93 ± 0.24 12.68 ± 1.07 20.26 ± 1.15 17.37 ± 6.0
Full History 7.19 ± 0.65 13.08 ± 3.00 5.07 ± 0.27 4.01 ± 0.34 12.06 ± 1.34 8.28 ± 3.0
Nov. Archive 7.91 ± 0.49 11.92 ± 2.18 9.97 ± 0.39 11.56 ± 0.67 10.41 ± 0.90 10.35 ± 1.0

compressibility or the quality of generated results. The second
baseline is the random AE, wherein each transformation phase
a new autoencoder is generated with random weights and is
used as-is for the following exploration phase. This baseline
tests whether guiding novelty search based on the patterns
of the past buildings created has any impact (compared to
an untrained autoencoder). The remaining three methods use
different training sets during the transformation phase. The
novelty archive AE (NA-AE) combines all novelty archives
from each population in the previous exploration phase to
form the training set for the autoencoder. The latest set AE
(LS-AE) combines only the 100 most novel final individuals
of the populations in the previous exploration phase into a
training set of 1000 individuals, while the full history AE
(FH-AE) combines the final individuals in every population of
every exploration phase so far to train the autoencoder (1000
individuals multiplied by the number of phases so far). The
three tested methods are designed to assess the importance of
all previous exploration steps versus only the last one, and
whether maintaining a history of the interim novel results
during evolution would yield more robust models.

The experiments were run for 10 iterations of the algo-
rithm (exploration phase followed by transformation phase),
evolving 10 separate populations of 200 individuals each. Each
exploration phase runs 100 generations of CPPN-NEAT, and
transformation retrains the autoencoder for 100 epochs, with
a batch size of 64, the “Adam” optimizer and categorical
cross-entropy loss function. Novelty was calculated using the
average Euclidean distance to the 15 nearest neighbors in
the latent space, and up to 3 individuals are inserted into
the novelty archive per generation. For these experiments,
autoencoders were trained to compress the 20×20×20×5
lattices into latent vectors of 256 real values. The first iteration
of each experiment uses the same set of seed populations
(randomly initialized CPPNs with no hidden nodes) which
are used to pre-train an autoencoder (the static autoencoder
used as baseline). The first exploration phase uses this trained
autoencoder and the seed populations to start the process
described in this section. This ensures that whilst there is an
element of stochasticity to the exploration and transformation
processes, all the experiments start from a common population
set and encoder model.

V. RESULTS

This section attempts to summarize the findings of the
experiments described in Section IV, focusing on the autoen-

Fig. 5: Average reconstruction error (%) and 95% confidence
interval tested on four datasets of buildings using the final
autoencoder from each experiment (after the 10th round of
exploration). Results for the Random AE experiment are
omitted due to its poor performance (reconstruction error >
90%) across all tests.

coders’ reconstruction accuracy experiments (Section V-A),
the diversity of the final evolved buildings (Section V-B),
and finally providing a brief qualitative comparison between
experiments (Section V-C).

A. Reconstruction Error

Table I shows the reconstruction error of the final autoen-
coders of each experiment, when they reconstruct the final
populations of each experiment (and, in the Overall column,
all final populations produced by all five methods). On the
one hand, we are interested in the ability of the autoencoder
to accurately reconstruct individuals evolved based on this
autoencoder’s notion of novelty (i.e. when AE and pop. are
the same). On the other hand, we want to know whether
some autoencoders are better at reconstructing buildings in
general (i.e. individuals produced by other experiments) as this
would indicate that either the autoencoder is more powerful
and generalizable or that the buildings produced by different
autoencoders and experiments share similar patterns.

Results in Table I indicate that the full history autoencoder
(FH-AE) is not only able to reconstruct its own populations
more accurately, but is also able to reconstruct all other sets of



IEEE TRANSACTIONS ON GAMES 7

Fig. 6: Voxel-based KL Divergence of the populations of
each experiment after every round of exploration. Results are
averaged across all 10 populations using a 95% confidence
interval. Iteration zero depicts the average diversity of the seed
populations.

generated buildings from all experiments (see Overall column).
Moreover, it is interesting to note that the latest set autoencoder
(LS-AE) is able to reconstruct LS populations, but struggles
when facing populations generated by all other methods. In-
terestingly, the reverse is true with the novelty archive autoen-
coder (NA-AE) which has comparable or lower reconstruction
errors in other populations than the ones it was evolving. While
the random (untrained) autoencoder understandably performs
very poorly, the static autoencoder is surprisingly robust even
when reconstructing the latest populations regardless of ex-
periment. This may indicate that the patterns of the CPPNs
that produce the buildings remain concise, regardless of the
CPPNs’ augmented topologies at later stages. On the other
hand, buildings evolved using the static autoencoder are also
fairly predictable, as their reconstruction error is low for both
the FH-AE and NA-AE.

Figure 5 shows the same reconstruction error measure tested
across four different datasets to visualize the autoencoders’
accuracy across a variety of inputs. The seed and final pop-
ulations refer to populations at the start (before evolution)
and end (end of 10th exploration phase) of each respective
experiment. The “Cubes” dataset consists of 200 buildings
made by randomly generating cuboid hulls of different sizes
and applying the repair pipeline to produce material lattices.
The “Medieval” dataset consists of a population of buildings
generated using the “AHouseV5” filter by Adrian Brightmoore
[46] in MCEdit, re-assigning the materials for each voxel
through the repair pipeline. Unsurprisingly, the random AE
performs very poorly across all four datasets, followed by
LS-AE which struggled to reconstruct anything except its
own final population. The NA-AE proved to be the most
robust model when given completely unseen data, displaying
the best reconstruction accuracy for the Medieval and Cubes

Fig. 7: Voxel-based KL Divergence of each experiment’s
populations from the seed populations used to start evolution.
Results are averaged across all 10 populations using a 95%
confidence interval. Iteration zero depicts the average diversity
of the seed populations.

datasets. As we have seen in Table I, the FH-AE shows
the best performance on its final populations, though (like
the static AE) struggled slightly compared to NA-AE on
completely unseen data. The NA-AE seems to benefit from
having the largest amount of (and most diverse) training data
for transformation compared to the rest of the experiments.

B. Voxel KL-Divergence

Figure 6 shows the progression of the average KL di-
vergence for the populations of each experiment. This was
calculated in the voxel space and measures the average KL
divergence of each individual to the rest of the population.
The results show that FH-AE and LS-AE produce less diverse
content in the voxel space over time compared to the rest of the
experiments. On the other hand, the static AE produces more
diverse content in the voxel space, without varying over time;
this is expected as the autoencoder is not retrained between ex-
ploration phases. Interestingly, the NA-AE produces a similar
trend to the static AE even though it is trained on the largest
dataset of individuals during transformation. The random AE
produces marginally more diverse content, albeit with a larger
deviation which is likely caused by the randomized weights
of the autoencoder. It is worth noting that while the LS-
AE and FH-AE populations trend downward in voxel-based
diversity, it does not in itself mean that the experiments are
not generating novel content in the latent space.

Figure 7 depicts the evolution of the average KL divergence
from the initial seeds (before evolution starts). Similar to
the previous metric, this was calculated by computing the
average KL diversity of each individual to every individual
in the corresponding seed population. The results show that
whilst the LS-AE and FH-AE produced the least diverse
individuals compared to each other, these same individuals



IEEE TRANSACTIONS ON GAMES 8

Fig. 8: Histogram comparing the distances between individuals in the latent space (i.e: the experiment’s novelty measure) and
phenotype space (Kullback-Leibler divergence on voxels) for the LS-AE, FH-AE, and NA-AE experiments’ final populations.

were the most diverse from the initial seeds. The static AE
produced the least diverse content for this metric with the
least variation over time, indicating that without retraining the
autoencoder NEAT struggles to produce significantly different
content over time (poor open-endedness). The NA-AE tends
to marginally increase in diversity from the seed populations
over time, though not to the extent of LS-AE and FH-AE. The
random AE produced the most inconsistent trend which is to
be expected due to the lack of training for the autoencoder
during the transformation phase.

While autoencoders were trained solely to minimize recon-
struction error (i.e., without an explicit regularization compo-
nent), we visualize the correlation between the novelty score
in the latent space and voxel KL divergence in Figure 8.
A regularized latent space is desirable as it ensures similar
phenotypes (buildings) are grouped together in the latent space
whilst dissimilar individuals are distanced appropriately. This
ensures the validity of the autoencoder’s distance measure,
as identifying novel individuals in the latent space will result
in more meaningfully different individuals in the phenotype
space. There is a clear linear correlation between the two
diversity measures for the NA-AE experiment’s final popu-
lations, with a Pearson correlation of 0.84. However, the LS-
AE and FH-AE distance functions both produce significantly
weaker correlations between the two measures, with a Pearson
correlation of 0.53 and 0.35 respectively.

C. Qualitative Comparison

Figure 9 depicts the individuals containing the minimum,
median and maximum novelty from each experiments’ final
populations (and seed population for comparison). By looking
at these examples we can get a qualitative idea of how novelty
and complexity is evolving over time. The seed population and
static AE share similar high-level patterns which is understand-
able given they use the same autoencoder and originate from
the same latent space. The effect of the lack of training for
the random AE experiment is clearly reflected in results which
are far noisier than the other experiments. The LS-AE, FH-AE
and NA-AE experiments show slight differences in the overall

structures generated compared to the seed set, though there
is no significant jump in structural complexity. This indicates
that whilst novelty search is promoting diversity in the latent
space, it does not guarantee diversity in the phenotype space
and does not explicitly evolve towards desired qualities as in
quality-diversity algorithms such as MAP-Elites [26].

VI. DISCUSSION

In this paper we apply novelty search in the latent space
(with basic constraints) for the challenge of creative building
generation in Minecraft. We tested three different approaches
to the transformation of the autoencoder which differ in
which evolved content is used for training. Results showed
that autoencoders that used more past data (either as novelty
archive or as final individuals of many exploration phases)
were the most robust and best performers in all reconstruction
error tests. The autoencoder trained on the latest set of results,
on the other hand, seemed to overfit to the data and per-
formed poorly on unseen data. The baseline which skipped the
transformation phase altogether performed respectably across
all the reconstruction tests, indicating the general patterns
produced by the CPPNs remain concise even in later stages
of evolution. The latest set autoencoder (LS-AE) and full
history autoencoder (FH-AE) experiments had the least diverse
final populations in the phenotype space, but produced the
most different results compared to the seed populations. The
novelty archive autoencoder (NA-AE) experiment maintained
a population diversity on par with the baselines while also
increasing diversity from the seed dataset. Finally, the NA-AE
produced a latent distance function with the best correlation
to our voxel-based diversity measure.

This line of research has focused on the creativity of the
proposed generator; however, the lack of additional constraints
to govern the feasibility of buildings is clear in the examples
generated during our experiments (see Fig. 9). This issue could
be mitigated through constraints enforcing basic architectural
qualities (e.g., stability, symmetry, interior space requirements)
and using a feasible-infeasible two-population [47] algorithm
(FI-2POP) to improve the realism of the output. Using this



IEEE TRANSACTIONS ON GAMES 9

Fig. 9: Visualization of individuals from each experiments’ final population sorted according to their novelty score (minimum,
median, maximum). To evaluate novelty the final autoencoder from each experiment was used (excluding the seed and static
AE populations which used the seed model).

approach, the repair functions could also be converted to fea-
sibility constraints to allow the CPPNs to generate lattices end-
to-end without the need for repair. Another direction could be
to seed the autoencoder or the initial population with pre-built
structures (such as the medieval dataset used in this paper) to
guide search towards house-like structures without imposing
additional constraints and restricting creativity. Furthermore,
the current approach does not create an appropriately designed
interior space in the generated structures, simply carving out
an enclosed volume and leaving it empty. This can be fixed
with a simple rule-based generator to design the interior space,
or by incorporating a more complex interior generator into the
pipeline in order to evolve the interior design in a creative
fashion. Although the repair functions ensured that the build-
ings adhered to certain qualities, the current approach does
not emphasize quality-diversity during evolution. Extending
the current implementation with an algorithm such as MAP-
Elites [26] could help ensure diversity is preserved in desired
qualities (e.g., stability, size) besides just novelty. Beyond
these extensions, it is important to test the generator on higher
resolution lattices, as the low resolution used in this paper is
potentially limiting the visual impact of the output.

Latent vector evolution has most notably been applied to
PCG for visuals [6], [7], [48], level content [3], robot behaviors
[8], as well as data efficient search space illumination [9]. To
our knowledge, it has not been readily applied to constrained
3D structures, and so this paper opens up potential for further
work in this domain. Our approach can also be applied to other
facets within Minecraft and in new domains entirely. Broadly,
it can be used in a mixed-initiative setting to promote creativity
for level designers creating new content [17] by seeding the
generator with human-designed content and generating novel
suggestions. Within Minecraft, creative settlement generation
(layout, adaptability, narrative) remains an open challenge
presented by the GDMC report [35] which would benefit from

open-ended evolution. Another interesting application would
be generating agents with diverse/interesting behaviors which
are evolved according to their surroundings. Our approach
could also be adapted to other facets of computational cre-
ativity [16], such as the generation of audio files or game
rules according to a set of constraints.

VII. CONCLUSION

In this paper we proposed an autonomous building generator
for Minecraft targeting open-ended complexity and creativity.
To achieve this the generator explores the problem space
through CPPN-NEAT, evolving individuals according to nov-
elty in the latent space, determined by a 3D autoencoder.
The transformation phase retrains the autoencoder using high-
performing (novel) examples from previous exploration phases
to open up new areas of the search space and create more com-
plex features. Whilst this work used very simple constraints
for building generation, it provides a relatively unrestricted
environment to test the creative capabilities of the generator.
We tested various approaches for the transformation phase
in order to identify its impact on population diversity and
complexity over time, as well as the reconstruction accuracy
of the autoencoders. Our results indicate that, by retraining the
autoencoder, the generator is able to more effectively generate
novel 3D structures compared to a static approach. The use
of an autoencoder and CPPNs also ensures our approach is
more scalable to higher resolution outputs, as the complexity
of novelty search remains tied to the latent vector size. By
addressing the limitations of our implementation, discussed
above, we believe our approach can be an effective tool for
generating diverse and creative content at a higher resolution,
and with an open-ended complexity that is not currently
achievable by the state of the art.



IEEE TRANSACTIONS ON GAMES 10

ACKNOWLEDGEMENTS

This project has received funding from the European
Union’s Horizon 2020 programme under grant agreement No
951911.

REFERENCES

[1] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 3, pp. 172–186, 2011.

[2] J. Lehman and K. O. Stanley, “Novelty search and the problem with
objectives,” in Genetic programming theory and practice IX. Springer,
2011, pp. 37–56.

[3] A. Liapis, H. P. Martı́nez, J. Togelius, and G. N. Yannakakis, “Trans-
forming exploratory creativity with DeLeNoX,” in Proc. of the Intl. Conf.
on Computational Creativity, 2013, pp. 56–63.

[4] W. Banzhaf, B. Baumgaertner, G. Beslon, R. Doursat, J. A. Foster,
B. McMullin, V. V. De Melo, T. Miconi, L. Spector, S. Stepney et al.,
“Defining and simulating open-ended novelty: requirements, guidelines,
and challenges,” Theory in Biosciences, vol. 135, no. 3, pp. 131–161,
2016.

[5] C. Guckelsberger, “Intrinsic motivation in computational creativity ap-
plied to videogames,” Ph.D. dissertation, Queen Mary University of
London, 2020.

[6] A. Hagg, S. Berns, A. Asteroth, S. Colton, and T. Bäck, “Expressivity
of parameterized and data-driven representations in quality diversity
search,” in Proc. of the Genetic and Evolutionary Computation Con-
ference. Association for Computing Machinery, 2021, p. 678–686.

[7] A. Nguyen, J. Yosinski, and J. Clune, “Understanding innovation en-
gines: Automated creativity and improved stochastic optimization via
deep learning,” Evolutionary computation, vol. 24, no. 3, pp. 545–572,
2016.

[8] A. Cully, “Autonomous skill discovery with quality-diversity and unsu-
pervised descriptors,” in Proc. of the Genetic and Evolutionary Compu-
tation Conf., 2019, p. 81–89.

[9] A. Gaier, A. Asteroth, and J.-B. Mouret, “Data-efficient design explo-
ration through surrogate-assisted illumination,” Evolutionary Computa-
tion, vol. 26, no. 3, p. 381–410, 2018.

[10] Mojang, “Minecraft,” Game [PC], 2011.
[11] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through

augmenting topologies,” Evolutionary computation, vol. 10, no. 2, pp.
99–127, 2002.

[12] C. Salge, M. C. Green, R. Canaan, and J. Togelius, “Generative design
in minecraft (GDMC) settlement generation competition,” in Proc. of
the Intl. Conf. on the Foundations of Digital Games, 2018, pp. 1–10.

[13] S. Colton, R. L. De Mántaras, and O. Stock, “Computational creativity:
Coming of age,” AI Magazine, vol. 30, no. 3, pp. 11–11, 2009.

[14] G. A. Wiggins, G. Papadopoulos, S. Phon-Amnuaisuk, A. Tuson et al.,
Evolutionary methods for musical composition. University of Edin-
burgh, Department of Artificial Intelligence, 1998.

[15] F. Peinado and P. Gervás, “Evaluation of automatic generation of basic
stories,” New Generation Computing, vol. 24, no. 3, pp. 289–302, 2006.

[16] A. Liapis, G. N. Yannakakis, and J. Togelius, “Computational game
creativity,” in Proc. of the Intl. Conf. on Computational Creativity, 2014.

[17] G. N. Yannakakis, A. Liapis, and C. Alexopoulos, “Mixed-initiative co-
creativity,” in Proc. of the Foundations of Digital Games, 2014.

[18] G. N. Yannakakis and J. Togelius, Artificial intelligence and games.
Springer, 2018, vol. 2.

[19] S. Colton and G. A. Wiggins, “Computational creativity: The final
frontier?” in Proc. of the European Conf. on Artificial Intelligence,
vol. 12, 2012, pp. 21–26.

[20] T. Taylor, “Evolutionary innovations and where to find them: Routes to
open-ended evolution in natural and artificial systems,” Artificial life,
vol. 25, no. 2, pp. 207–224, 2019.

[21] S. Stepney, “Modelling and measuring open-endedness,” Artificial Life,
vol. 25, no. 1, p. 9, 2021.

[22] H. F. Harlow, “Learning and satiation of response in intrinsically moti-
vated complex puzzle performance by monkeys.” Journal of comparative
and physiological psychology, vol. 43, no. 4, p. 289, 1950.

[23] R. M. Ryan and E. L. Deci, “Intrinsic and extrinsic motivations: Classic
definitions and new directions,” Contemporary educational psychology,
vol. 25, no. 1, pp. 54–67, 2000.

[24] G. N. Yannakakis and J. Togelius, “Experience-driven procedural content
generation,” IEEE Transactions on Affective Computing, vol. 2, no. 3,
pp. 147–161, 2011.

[25] D. Gravina, A. Khalifa, A. Liapis, J. Togelius, and G. N. Yannakakis,
“Procedural content generation through quality diversity,” in Proc. of the
IEEE Conf. on Games, 2019.

[26] J.-B. Mouret and J. Clune, “Illuminating search spaces by mapping
elites,” arXiv preprint arXiv:1504.04909, 2015.

[27] D. Gravina, A. Liapis, and G. Yannakakis, “Surprise search: Beyond
objectives and novelty,” in Proc. of the Genetic and Evolutionary
Computation Conf., 2016, pp. 677–684.

[28] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgård, A. K. Hoover,
A. Isaksen, A. Nealen, and J. Togelius, “Procedural content generation
via machine learning (pcgml),” IEEE Transactions on Games, vol. 10,
no. 3, pp. 257–270, 2018.

[29] A. Summerville and M. Mateas, “Super mario as a string: Platformer
level generation via lstms,” arXiv preprint arXiv:1603.00930, 2016.

[30] R. Jain, A. Isaksen, C. Holmgård, and J. Togelius, “Autoencoders for
level generation, repair, and recognition,” in Proc. of the ICCC workshop
on computational creativity and games, vol. 9, 2016.

[31] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, and S. Risi,
“Evolving mario levels in the latent space of a deep convolutional
generative adversarial network,” in Proc. of the genetic and evolutionary
computation Conf., 2018, pp. 221–228.

[32] A. Liapis, G. N. Yannakakis, and J. Togelius, “Constrained novelty
search: A study on game content generation,” Evolutionary Computation,
vol. 23, no. 1, pp. 101–129, 2015.

[33] T. Shu, J. Liu, and G. N. Yannakakis, “Experience-driven pcg via
reinforcement learning: A super mario bros study,” in Proc. of the IEEE
Conf. on Games, 2021.

[34] S. Alvernaz and J. Togelius, “Autoencoder-augmented neuroevolution
for visual doom playing,” in Proc. of the IEEE Conf. on Computational
Intelligence and Games, 2017.

[35] C. Salge, M. C. Green, R. Canaan, F. Skwarski, R. Fritsch, A. Bright-
moore, S. Ye, C. Cao, and J. Togelius, “The AI settlement generation
challenge in Minecraft: First year report,” KI-Künstliche Intelligenz,
vol. 34, no. 1, pp. 19–31, 2020.

[36] C. Salge, C. Guckelsberger, M. Green, R. Canaan, and J. Togelius,
“Generative design in minecraft: Chronicle challenge,” in Proc. of the
10th Int. Conf. on Computational Creativity. ACC, 2019, pp. 311–315.

[37] M. C. Green, C. Salge, and J. Togelius, “Organic building generation
in minecraft,” in Proc. of the Intl. Conf. on the Foundations of Digital
Games, 2019.

[38] S. Sudhakaran, D. Grbic, S. Li, A. Katona, E. Najarro, C. Glanois, and
S. Risi, “Growing 3D Artefacts and Functional Machines with Neural
Cellular Automata,” in Proc. of the Conf. on Artificial Life, 2021, pp.
108–117.

[39] M. Awiszus, F. Schubert, and B. Rosenhahn, “World-gan: a generative
model for minecraft worlds,” in Proc. of the IEEE Conf. on Games,
2021.

[40] Mcedit: World editor for minecraft. Accessed 9 May 2022. [Online].
Available: https://www.mcedit.net/

[41] K. O. Stanley, “Compositional pattern producing networks: A novel
abstraction of development,” Genetic programming and evolvable ma-
chines, vol. 8, no. 2, pp. 131–162, 2007.

[42] D. Gravina, A. Liapis, and G. N. Yannakakis, “Fusing novelty and
surprise for evolving robot morphologies,” in Proc. of the Genetic and
Evolutionary Computation Conf., 2018, pp. 93–100.

[43] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. 10, p. 99–127,
2002.

[44] Z. Zhang and M. R. Sabuncu, “Generalized cross entropy loss for
training deep neural networks with noisy labels,” in Proc. of the Neural
Information Processing Systems Conf., 2018.

[45] S. M. Lucas and V. Volz, “Tile pattern kl-divergence for analysing
and evolving game levels,” in Proc. of the Genetic and Evolutionary
Computation Conf., 2019, pp. 170–178.

[46] A. Brightmoore. AHousev5 MCEdit Filter. Accessed 9 May 2022.
[Online]. Available: http://www.brightmoore.net/mcedit-filters-1/ahouse

[47] S. O. Kimbrough, G. J. Koehler, M. Lu, and D. H. Wood, “On a feasible–
infeasible two-population (fi-2pop) genetic algorithm for constrained
optimization: Distance tracing and no free lunch,” European Journal
of Operational Research, vol. 190, no. 2, pp. 310–327, 2008.

[48] M. Zammit, A. Liapis, and G. N. Yannakakis, “Seeding diversity into
AI Art,” in Proc. of the Intl. Conf. on Computational Creativity, 2022.

https://www.mcedit.net/
http://www.brightmoore.net/mcedit-filters-1/ahouse

	I Introduction
	II Related Work
	II-A Computational Creativity and Games
	II-B Novelty in the Latent Space
	II-C Minecraft Settlement Generation

	III Methodology
	III-A Representation and Generation
	III-B Exploration
	III-C Transformation

	IV Experimental Protocol
	V Results
	V-A Reconstruction Error
	V-B Voxel KL-Divergence
	V-C Qualitative Comparison

	VI Discussion
	VII Conclusion
	References

